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J. Phys. A: Math. Gen. 15 (1982) L611-L615. Printed in Great Britain 

LETTER TO THE EDITOR 

On the exact ground states of three-dimensional Ising spin 
glasses 

Francisco Barahonat and Enzo Maccioni 
Departamento de Matemlticas, Universidad de Chile 

Received 1 July 1982 

Abstract. We present a new method based on linear programming to obtain the exact 
ground states of three-dimensional Ising spin glasses. Numerical simulations were carried 
out with the *.I model, and the Gaussian model with mean p and variance a*. Ferromag- 
netism disappears in the *.I model at concentrations of negative bonds near 27%. This 
occurs, in the Gaussian model, when p is near 0 . 6 ~ .  

Numerical simulations of spin glasses have been made during recent years using the 
Monte Carlo method. At zero temperature this method is quite inefficient to find the 
true ground states, as the system might be trapped for a very large time in a low-lying 
excited state. For two-dimensional spin glasses this problem has been solved by an 
efficient algorithm of combinatorial optimisation in Bieche et a1 (1980). Moreover, 
the morphology of ground states has been studied by a related method of matching 
theory in Barahona et a1 (1982). However, in 3 ~ ,  this problem has been shown to 
belong to the class of NP-hard problems (Barahona 1982), and this fact suggests that 
it is very unlikely that an efficient algorithm could exist. Hence, we must expect to 
obtain an exact solution only for grids of moderate size. 

The problem of getting a ground state can be formulated as the quadratic problem 

(PI) Minimise -c Ji,SiSi subject to: Si E { -1 , l )  for any spin i. 
Given an assignment of values to the variables {Si}, a bond (ij) is said to be satisfied 

if JiiSiSi > 0, otherwise it is said to be unsatisfied. Contours having an odd number of 
negative bonds are called frustrated. Frustrated contours have always at least one 
unsatisfied bond. 

If we define 
if ( i j )  is unsatisfied, 
if (ij) is satisfied, 

x.. = ’’ {i 
it is easy to see that (Pl)  is equivalent to the integer linear programming problem 

Minimise (1) lJijlXij subject to: 

(P2) (2) 1 X ,  L 1 for any frustrated contour C, 
( i j ) s C  1 (3) Xii E (0, 1) for any bond ( i j ) .  

We define (P2’) as (P2), but replacing the integrality condition (3) by (3’) Xii 3 0. 

t Present address: Institut fur Okonometrie und Operations Research, Universitat Bonn, Nassestr. 2, 
D-5300 Bonn 1, West Germany. 
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As is shown in Barahona er a1 (1982), for ZD, (P2‘) has always an integer-valued 
solution, and hence it is a solution of (P2). 

For 3 ~ ,  (P2’) does not necessarily have an integer-valued solution, thus it would 
give a lower bound of the ground state energy. However, in all the cases we have 
tried the solution of (P2’) has been integer valued, and hence, a solution of (P2). 
This fact indicates that (P2’) is a ‘tight’ relaxation of (P2). 

Even when (P2’) is a linear programming problem it cannot be solved directly, 
because the number of frustrated contours can be tremendously large. We describe 
below an iterative procedure to solve (P2’), and then show the results obtained with 
5 x 5 x 5 grids both for the *J model and the Gaussian model. 

The study of polyhedra associated with combinatorial optimisation problems has 
been a field of intensive research in the last few years and it has given powerful tools 
for the solution of these problems. In our case, the frustiated contours define facets 
of the polyhedron associated with (P2), hence these inequalities are required in any 
non-redundant description of this polyhedron. In an integer programming sense they 
are ‘strong’ cutting planes and can be expected to perform satisfactorily in computation. 

We can mention that a similar approach has been successfully applied to the 
travelling salesman problem in Grotschel (1980) and Padberg and Hong (1980). 

The procedure can be described as follows. 
Srep 1. Solve (P2’) with a subset S of its constraints. Let X be the solution thus 

obtained. 
Step 2. If X does not violate any constraint of type (2) stop, X is the solution of 

(P2’). Otherwise identify a set of violated constraints of type (2), add this set to S 
and go to step 1. 

Step 1 can be carried out with a linear programming package such as IBM’s MPSX 
or CDC’s APEX. There are standard procedures to revise the solution when a set 
of constraints is added. 

Step 2 involves a combinatorial problem that can be solved in polynomial time. 
To describe the method we will use some graph theoretic terminology that can be 
found in Berge (1962) and Harary (1969). 

First, we describe the heuristic method we have utilised. The grid is seen as a 
graph G, the weight X,, is given to the bond (ij), and a minimum-weighted spanning 
tree T is found. When a bond in G - T is added to T a cycle is formed; if this cycle 
is a frustrated contour the sum of the weights of its bonds is computed and compared 
with 1. In all the cases we have tried this procedure has given a large set of violated 
constraints. Furthermore, if we fix as satisfied the bonds in T, we obtain a spin 
configuration that can be a good approximation to the ground state, and can give a 
good upper bound to the ground state energy. On the other hand, the solution X 
gives a lower bound to this energy. The size of the interval defined by these bounds 
decreases when the computation advances. If these two bounds coincide, the ground 
state is attained. 

Now, we will describe an exact method to carry out step 2. First, at the middle 
of each positive bond, a vertex is added. It is easy to see that there is a one-to-one 
correspondence between frustrated contours and cycles of odd cardinality in the new 
graph. As each positive bond has been transformed into two bonds, the weight of 
the new bonds must be one half of the weight of the original one. In Grotschel and 
Pulleyblank (1981) is described a polynomial method that utilises the matching 
algorithm to find a minimum-weighted odd cycle. We have not used this procedure 
because our heuristic method takes less computation time. 
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In order to essay this method we have tried three samples of n impurities randomly 
distributed in a cube of edge size cm. The interactions are calculated as 

J(r i j )  = cos(2.4 x 108rii>/r%, 

where rij is the distance between the impurities. We have found the ground states 
considering only the m greatest interactions. In table 1 are shown for different values 
of IZ and m the number of iterations of the algorithm (number of times that step 1 
and step 2 must be executed), and the total number of frustrated contours needed. 

Table 1. 

n m Iterations Frustrated contours 

100 435 6 3028 
125 510 6 2413 
150 601 10 5055 

Then we have tried with 5 X 5 x 5 grids with periodic boundary conditions, and *tJ 
interactions. Table 2 shows the number of iterations of the algorithm and the total 
number of frustrated contours needed, for different values of X, the concentration of 
negative bonds. 

Table 2. 

X Iterations Frustrated contours 

0.10 2 112 
0.20 5 1631 
0.25 2 1  4869 
0.30 19 5253 

In figure 1 the ground state energy (per spin) is plotted as a function of X. In 
figure 2 the magnetisation is plotted as a function of X. It can be noted that 
ferromagnetism disappears for X near 0.27. 

Finally we have tried with the Gaussian model with mean p and variance c*, in 
5 ~ 5 x 5  grids with periodic boundary conditions. Table 3 shows the number of 
iterations and the number of frustrated contours for p = 0,0.3g, 0.6a, 0 . 9 ~ .  

Table 3. 

CL Iterations Frustrated contours 

0 15 4096 
0.3~ 16 3897 
0.6~ 10 4090 
0.90 3 1165 

In figure 3 the ground state energy (per spin) divided by U is plotted as a function 
of p. 
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Figure 3. 

Figure 4 shows the magnetisation as a function of F.  Ferromagnetism disappears 
for values of F near 0 . 6 ~ .  

As we can see, this method appears as a useful tool to get the ground state for 
samples of moderate size. To our knowledge this is the only non-trivial method that 
guarantees that the solution obtained is a true ground state. 
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